A New Parallel Algorithm for Connected Components in Dynamic Graphs

Robert McColl Oded Green David Bader
Overview

- The Problem
- Target Datasets
- Prior Work
- Parent-Neighbor Subgraph
- Results
- Conclusions
The Problem

Component Labeling

- Given *undirected* graph $G = \{V,E\}$
 - $V =$ set of vertices, $E =$ set of edges $(u,v) : u,v \in V$
- Compute $C(V) : C_u = C_v$ iff a path exists from u to v
The Problem

Component Labeling in a Dynamic Graph

- Given same graph $G = \{V,E\}$, component labels $C(V)$
- Maintain $C(V)$ as edges are added and removed
 - Vertex insertion/removal handled as set of edge actions

<table>
<thead>
<tr>
<th>Problem</th>
<th>Datasets</th>
<th>Prior Work</th>
<th>PN Subgraph</th>
<th>Results</th>
<th>Conclusion</th>
</tr>
</thead>
</table>
The Problem

Component Labeling in a Dynamic Graph

• **Given** same graph $G = \{V,E\}$, component labels $C(V)$
• **Maintain** $C(V)$ as edges are **added** and **removed**
 - Vertex insertion/removal handled as set of edge actions

`edge inserted`

`edge removed`
The Problem

Component Labeling in a Dynamic Graph

- Given same graph $G = \{V,E\}$, component labels $C(V)$
- Maintain $C(V)$ as edges are added and removed
 - Vertex insertion/removal handled as set of edge actions

edge inserted
 relabel purple to blue
edge removed
 relabel blue to orange
The Problem

Component Labeling in a Dynamic Graph

• **Given** same graph $G = \{V,E\}$, component labels $C(V)$
• **Maintain** $C(V)$ as edges are *added* and *removed*
 - Vertex insertion/removal handled as set of edge actions
The Problem: Applications

• **Support** additional algorithms
 – Centrality metrics, community detection, image processing

• **Social network** analysis and intelligence
 – Do smaller groups make contact with the big component?

• **Tracking** power grid issues
 – Will a line failure cause a blackout? Will the addition of a new line solve it?

• **Communications network** tracking
 – Does losing a link break the connectivity of the network?
Massive Streaming Semantic Graphs

Features
- Millions to billions of vertices and edges with rich semantic information (name, type, weight, time), possibly missing or inconsistent data
- Thousands to millions of updates per second
- Power-law degree distribution, sparse \(d(v) \sim O(1) \), low diameter

Financial
- NYSE processes 1.5TB daily, maintains 8PB

Social
- Facebook: 37,000 Likes and Comments per second
- Twitter: 5,000 Tweets per second

Google
- “Several dozen” 1PB data sets
- Knowledge Graph: 500M entities, 3.5B relationships

Business
- eBay: 17 trillion records, 1.5B new records per day
Observations and Synthetic Data

Components
• Generally one large component containing majority of graph
• Insertions are easy, deletions are challenging
• Deletions that actually cleave components are uncommon
• Fastest implementations of static algorithms are $O(V+E)$ with $O(V)$ storage
• Goal: maintain this bound, improve average-case performance
Observations and Synthetic Data

Recursive Matrix (R-MAT) Generator

• Our experiments use the R-MAT generator (0.55, 0.1, 0.1, 0.25)

• Creates initial power-law distribution graph

• Generates stream of 100k-1M insertions, deletions uniformly sampled from initial graph + insertions without replacement (p_{delete} = 6.25%)

• Size in terms of Scale, Edgefactor
 – |V| = 2^{\text{Scale}}, |E| = \text{Edgefactor} * |V|
 – Scales: 20~24, Edgefactors: 8, 16, 32, 64

• Similar component properties to real graphs
 – Possibly harder than real graphs due to lower clustering coefficient, increased cleaving, deeper searches for connectedness

Problem | Datasets | Prior Work | PN Subgraph | Results | Conclusion
Prior Work: Theoretical

Static Parallel Algorithms
- CONNECT, Hirschberg et. al. (1979)
 - $V \cdot \text{ceil}(V \log V)$ or V^2 processors, $O(\log(V^2))$ time
- Shiloach and Vishkin (1982)
 - $V + 2E$ processors, $O(\log(V))$ time
 - Implementations show good parallelism, load balance, simplicity, completes in $\sim d(G)/2$ iterations (beneficial on graphs of interest)

Dynamic Parallel Algorithms
- Shiloach and Even (1981)
 - Theoretical algorithm maintaining a full BFS tree per component handling edge removal
 - Maintain sequence of graphs per edge insertion and reachability trees
- D. Eppstein et al. (1997)
 - Sparsification as a technique for accelerating dynamic graph algorithms
- P. Ferragina (1994)
 - Use sparsification for static and dynamic algorithms
 - Maintain series of colored graphs or sets of spanning trees within components
Prior Work: Application

There are plenty of theoretical approaches, so is the problem not solved?
• Too expensive to compute in practice
• Ignore the properties of real systems and graphs
• Frequently require \(O(G)\) storage

Dynamic Parallel Algorithms
• Recompute each step following Shiloach-Vishkin-based algorithm or using repeated applications of Beamer et. al. (2012) BFS
• Ediger et. al. (2011) compute triangle intersections upon delete, recompute if no common neighbors
• Our other experiments
 – Spanning tree inside each component, only worry about deletions that hit the spanning tree
 – Keep a separate secondary spanning tree, only worry once a vertex has no edges in either tree

Are these also not good enough?
• Work well over smaller (1,000s) batches of edge updates
• In practice, handle 90~99.7% of deletions, but with a batch of 100k edges at 6.25% deletes this means ~18 edges per batch that cause recompute each cycle
The Parent-Neighbor Subgraph

Maintain one PN Subgraph per component

- Select a vertex at random
- Perform a breadth-first traversal of the component
- Construct a directed subgraph where each vertex tracks its parents and neighbors
 - Parents: adjacencies in previous frontier
 - Neighbors: adjacencies in same frontier
 - Record the distance to the root
- Limit the total number of PN tracked per vertex to $thresh_{PN}$
 - Prefer parents over neighbors
- This subgraph maintains various paths back to the root
 - If each vertex has a path to the root through its PN, component is connected

Problem | Datasets | Prior Work | PN Subgraph | Results | Conclusion
The Parent-Neighbor Subgraph

In the event of an insertion

- Vertices on the same frontier or one apart, same component:
 - Check for opportunity to add a parent or neighbor
 - Check for opportunity to replace neighbor with parent

- Vertices are farther apart but in the same component:
 - Perform the same as above
 - The distances will now be incorrect; however, they are still acceptable for our purposes
 - Incorrect distances will eventually be cleaned up by merger or delete

Problem | Datasets | Prior Work | PN Subgraph | Results | Conclusion

thresh_{PN} = 2

Georgia Tech College of Computing
In the event of an insertion

- Joining two components:
 - Join the smaller component into the larger PN subgraph
 - Start a search from the connection point(s) outward and rebuild the smaller subgraph
The Parent-Neighbor Subgraph

In the event of an insertion

- Joining two components:
 - Join the smaller component into the larger PN subgraph
 - Start a search from the connection point(s) outward and rebuild the smaller subgraph
The Parent-Neighbor Subgraph

In the event of a deletion

Check for remaining parents or neighbors that still have parents

• Have parents with paths to root:
 – Do nothing

• Have neighbors with paths to root:
 – Change distance to indicate to children and neighbors not to depend on you

• Else (no parents or neighbors with paths to root):
 – Assume components have split
 – Start search and relabel process down the PN subgraph
 – If a node in the frontier above can be reached, still connected. Backtrack and rebuild traversed section of PN.
 – Otherwise a new PN subgraph and component is built.
The Parent-Neighbor Subgraph

In the event of a deletion
Check for remaining parents or neighbors that still have parents
- Have parents with paths to root:
 - Do nothing
- Have neighbors with paths to root:
 - Change distance to indicate to children and neighbors not to depend on you
- Else (no parents or neighbors with paths to root):
 - Assume components have split
 - Start search and relabel process down the PN subgraph
 - If a node in the frontier above can be reached, still connected. Backtrack and rebuild traversed section of PN.
 - Otherwise a new PN subgraph and component is built.
The Parent-Neighbor Subgraph

Additional rules

- Batch updates performed in a sequence of parallel stages
 - To prevent performing duplicate work
 - All search and reconstruction steps are parallelized
 - Check to see if state already repaired before performing component search after delete

- PN data structure maintained in arrays using in-place atomic CAS for parallel safety

- Singletons / pairs always put aside and processed in parallel

- See paper / source for specifics
Algorithmic Results

• Storage is still $O(V)$
 - Since thresh_{PN} is constant, $P_{n_{subgraph}} = \text{thresh}_{PN} \times V$
 - thresh_{PN} doesn’t have to be very large

• Worst case update time is still $O(V + E)$
 - Performing full search and rebuild per component
 - Average case is generally much better
 - Worse case is highly unlikely
Algorithmic Results

Average number of unsafe deletes per 100k batch as a function of $thresh_PN$ and edge factor at scale 22

- Unsafe: requires search (i.e. no remaining parents or neighbors), still usually does not mean component was split
- With graph densification, number drops significantly
- $thresh_PN = 4$ good tradeoff between performance, storage
Algorithmic Results

Average number of PN modifications per 100k batch as a function of $\text{thresh}_{\text{PN}}$ and edge factor at scale 22

- Again, with graph densification, number drops significantly
- Again, $\text{thresh}_{\text{PN}} = 4$ good tradeoff between performance, storage
 - Fewer modifications in the tree = faster updates
Performance Results

Speedup over parallel static recompute for three different graphs with 16M vertices, up to 1B edges

- Ten batches of 100k updates
- 64 threads
- 4 x 16-core AMD Opteron 6282 SE

Speedup over sequential for multiple graphs at each size

- 1MB L2 / core
- 16MB shared L3 / socket
- 64 cores running at 2.6GHz
- 256GB DDR3 RAM @ 1600MHz
Performance Results

- Fraction of time during each update cycle (components + graph update) spent in the component update
- Demonstrates that the scaling of the algorithm is in line with the scaling of the data structure itself
Conclusions

New algorithm improves over prior static and dynamic options

- Never requires static recomputes, and in the worst case the dynamic update is only as costly as recomputing \(O(V + E) \)
 - Significantly better than recomputation in the average case
- Scalability is in line with the scalability of the data structure used and the static algorithm
- Storage requirement remains at \(O(V) \)
 - Storage can be adjusted via \(\text{thresh}_{PN} \) at possible performance costs
 - Likely should be tuned for graphs of other types

Future work

- Apply Beamer’s BFS optimization
- Try graphs of different types
Acknowledgment of Support